
Open Source, High-Performance, Scalable

Time-Series Database with SQL Support

Jeff Tao
Founder and core developer of

TDengine

What is time-series
data?

Time-series data is a series of time-stamped data.

Typical scenarios:
• Data generated by IoT devices, sensors, meters, etc.

• Data generated by vehicles

• Data generated by the agents in DevOps (hosts, VMs, containers

…)

• Financial market data

Popular time-series databases on market

• InfluxDB

• TimeScaleDB

• TDengine

• QuestDB

• Prometheus

• OpenTSDB

• VictoriaMetric

• Graphite

• RRDTool

• ………

Why do we need a new Time-Series Database?

1. Developer friendly
1. Flexible Data ingestion
2. Query language
3. Open system
4. Management efforts

2. Scalability
1. Vertical scalable
2. Horizontal scalable

3. Performance
1. Data ingestion rate
2. Query latency

4. Beyond database, other components are needed for a modern data processing
system
1. Stream processing
2. Caching
3. Data subscription

Characteristics of time-series
data

Data always has time stamp

Structured data

Data source is like a stream

Data is rarely deleted or updated

Retention policy is always applied

More write than read operations

Data rate is pretty stable

Real-time data computing is desired

Query is always in time and space range

Massive data volume

1

2

3

4

6

7

8

9

5 10

TDengine takes full advantages of the above
characteristics

• Due to purpose built time-series data storage engine,

TDengine improves read/write performance 10 times over

generic RDBMS.

• TDengine can process 20k writes or read 10s of

millions records in a second by one single core

• The data compression ratio is 5x higher than RDBMS.

• Compared with InfluxDB, data ingestion rate is 2-5

times higher, For query scenarios, a few have the same

speed as InfluxDB, while the majority are several

times faster, and some are up to 40 times faster. Data

compression ratio is 70% higher.
Testing reports are available at：www.tdengine.com

TDengine Highlights – High Performance

• Native distributed design

• Support both sharding and partitioning

• A shard contains data for multiple

time-series

• A partition contains data for a time range

• A node may contain multiple shards
v2

v3

v5

T0 -
T1

T1 –
T2

T2 –
T3

Partitioning based on time range

v4

Sh
ar
di
ng
 b
y
ti
me
-s

er
ie
s

TDengine dissection of big
data

TDengine Highlights - Scalable

• TDengine supports SQL-like Syntax, and support C/C++, JAVA, GO,

Rust, Python, Node JS, RESTful APIs.

• Ad-hoc query through TDengine Shell

• No learning curve, small migration cost
create database demo;

use demo;

create table t1(ts timestamp, degree

float);

insert into t1 values(now, 28.5);

insert into t1 values(now, 29.0);

select * from t1;

select avg(degree), count(*) from t1;

TDengine – SQL Support

TDengine – All in One

TDengine: All in One Time-Series Data Platform

MSG Queue

Built-in,

No need for Kafka or

other message queue

Caching

Provides Real-time

Latest Record

No need for Redis

Database

Combine Real-time and

Historical DB,

transparent operations

Stream Comp.

Stream Computing over

single or multiple

devices

Subscriptio
n

Latest data pushed to

applications

automatically

Full Stack for IoT, No more Kafka, Redis, Spark, HBase, Zookeeper, etc.

Complexity is highly reduced, efficiency and performance are highly

improved

TDengine – Resource Requirements

• Installation package is only 3.4M, no any other

dependency.

• The minimum memory requirements is less than 16M

• It can be run even on ARM 32, Raspberry Pi

A perfect solution for Edge
Computing

TDengine Innovation #1

Data Model

one table for one data collection point (one
sensor)

• Each record has a time stamp

• Structured, mainly numerical numbers

• Consistent structure unless the

firmware is updated

• Each device has a static attribute

label

• the time when the data of each device

arrives at the server is

uncontrollable, but the relative order

of the collected data points from each

device to the server is basically

guaranteed

Device ID Time Stamp Data Collected Static Label

Device ID Time Stamp Current Voltage Phase Location Type

d1001 1538548685000 3.13 220 0.31 CA.SanJose 1

d1002 1538548685100 8.21 219 0.82 CA.PaloAlto 2

d1001 1538548686000 3.11 219 0.35 CA.SanJose 1

d1003 1538548683000 5.41 110 0.53 CA.Cupertino 1

d1002 1538548686100 8.11 223 0.81 CA.PaloAlto 2

d1002 1538548687130 8.15 215 0.85 CA.PaloAlto 2

d1001 1538548687000 3.15 223 0.32 CA.SanJose 1

d1003 1538548684000 5.51 112 0.54 CA.Cupertino 1

d1003 1538548685000 5.60 109 0.53 CA.Cupertino 1

d1002 1538548688100 8.19 218 0.87 CA.PaloAlto 2

d1003 1538548686000 5.62 108 0.56 CA.Cupertino 1

d1001 1538548688500 3.19 221 0.31 CA.SanJose 1

Data
Characteristics

Typical scenario: smart power meter

Device ID: D1001, label loc: CA.SanJose type: 1

Time stamp Current Voltage Phase

1538548685000 3.13 220 0.31

1538548686000 3.11 223 0.35

1538548687000 3.15 219 0.32

1538548688500 3.19 221 0.33

• Records are automatically sorted by time

• Simple append operation for writing new data

• Less fluctuation in column values

• Device ID and label will not be stored

repeatedly

Device ID : D1002, label loc: CA.PaloAlto
type: 2

Device ID: D1003, label loc: CA.Cupertino type:
2

Time stamp Current Voltage Phase

1538548685100 8.21 219 0.82

1538548686100 8.11 223 0.81

1538548687130 8.15 215 0.85

1538548688100 8.19 218 0.87

Time stamp Current Voltage Phase

1538548683000 5.41 100 0.53

1538548684000 5.51 109 0.54

1538548685000 5.60 112 0.53

1538548686000 5.62 108 0.56

Benefit of the

design:

One table for one data collection point
(sensor)

0 1 2 3 4 5

0 1 2 3 4 5

• The records of each table are stored in

blocks

• A data block contains a number of records

• Each data block comes with pre-calculation

• Each data block has a schema

• A table often has multiple data blocks

• The system has a block index, based on the

start/end time, locate the data block right

away

Table storage: block by block, each contains a number of records

Time stamp Current Voltage Phase

1538548685000 3.13 220 0.31

1538548686000 3.11 223 0.35

1538548687000 3.15 219 0.32

1538548688500 3.19 221 0.33

1538548685000 1538548686000 1538548687000 1538548688500 3.13 3.11 3.15 3.19 220 223 219 221 0.31 0.35 0.32 0.33… … …

• Compression rate significantly improved:

• Similar data in a column to facilitate compression;

• different data types can use different compression

algorithms

• Analysis performance significantly improved:

• The analysis of time series data is often carried out

for a collection of data in a certain time period. A

lot of unused data will be read using row-based

storage

1538548685000 3.13 220 0.31 1538548686000 3.11 223 0.35… 1538548687000 3.15 219 0.32 1538548688500 3.19 221 0.33……

Column-based Store

Row-based Store

✓

Data in the block using column-based store

TDengine Strategies:

✔ One table for one data collection point (sensor)

✔ Records are stored block by block, and continuously inside a block

✔ Column-based storage for each block

Ensure read/write efficiency of a single data collection point is the best

• Many data collection points for same type of data, e.g. there may be 30

million smart meters in a province

• The same type of data collection points often need to be aggregated

• Multi-dimensional analysis of collected data required, and the dimensions of

analysis may be uncertain during modeling

"One table for one data collection point" brings technical challenges:

The number of tables is huge, difficult to manage, and difficult to

aggregate

Other characteristics of time-series big
data

TDengine Innovation #2

Super Table

efficient aggregation of multiple data collection points

• To describe a super table, i.e. a data collection point type,

 we need to define two schemas:

• Data schema of the collected data (time-series)

• Data schema of the static label (attributes)

• Create a table for a specific data collection point：

• Taking the super table as a template,

 the schema of the table is the collected data schema of the super

table

• Assign specific values to static labels

Super Table: a certain type of data
collection point

create table smeter (ts timestamp, current float, voltage int, phase float)
 tags (loc binary(20), type int);

Create a super table for the smart power meter, the collected data includes

current,

voltage and phase, and the label includes location and type

create table t1 using smeter tags(‘CA.SanJose’, 1);
create table t2 using smeter tags(‘CA.PaloAlto’, 2);
create table t3 using smeter tags(‘CA.Cupertino’, 1);
create table t4 using smeter tags(‘CA.SanJose’, 2);
create table t5 using smeter tags(‘TX.Austin’,1);
create table t6 using smeter tags(‘TX.Dallas’, 1);

Use smeter as a template to create 6 tables for 6 smart meters, and the location

labels are CA.SanJose, CA.PaloAlto, TX.Austin, etc.

A Super Table Example

Select avg(voltage), max(current) from smeters where loc = “CA.SanJose”

Query the average voltage and maximum current of all smart meters in CA SanJose

• Super table can be queried like ordinary table, but can specify the filter of

labels

• There can be as many as 128 labels, and each label represents an analysis

dimension

• Labels can be added, deleted, and modified after data modeling

• Each label can be a tree structure, which narrows the search scope

Select avg(voltage) from smeters where type = 1 and loc like “CA%”

Query the average voltage of the type 1 smart meter in CA

Aggregation and multi-dimensional analysis by super
table

Strategies:

• Label data is stored completely separated from time series data

• Use Key-Value storage to facilitate addition, deletion and modification

operations

• One label record for each data collection point

• Label records are stored together and indexed
Advantages:

• Compared to a typical NoSQL database, label values are not stored repeatedly, which

reduce storage space significantly

• In multi-dimensional aggregation, first filter the label to find the collection points

that need to be aggregated, reduce the aggregated data set significantly

• The total number of label records is equal to the number of collection points, the

amount is small enough to be stored in memory to improve query efficiency

Label storage

• In fact, Tag Data is a Dimension Table, and TS Data is a Facts Table.

• From another perspective, the design of the super table is a two-level index structure, and the

first-level index is a label used to filter data collection points. The second index is a

timestamp, used to filter the collected time series data

6. TDengine returns the result to the App

1. App initiates a query request to

TDengine

Main process:

2. TDengine sends the tag filter conditions to
the

 tag data processing module
3. The tag query module returns a list of

collection
 points that meet the filter conditions

4. TDengine notifies the time series data processing
 module to perform aggregation on the selected
 data collection points in the specified time
period5. TDengine receives the aggregated result

2

3

4

5

16

Tag Data

Time Series
Data

TDengine

App

TDengine aggregation process

Advantages of TDengine Super Table:

✔ Significantly reduce label storage space

✔ Significantly improve the aggregation efficiency of data collection points

✔ Enable convenient and efficient multi-dimensional analysis

TDengine is a powerful multi-dimensional analysis tool

The strategy of high reliability design :

• Guaranteed by WAL (Write Ahead Log)

• Inbound data is always written to WAL first,

 then to memory, and then reply to the application for

confirmation

• If system is crashed, data can be restored from WAL when

restarting

High Reliability of
TDengine

Frozen
Data

Hot
Data

Warm
Data

Cold
Data

last hour Last 10 days Last 6 months Last 3 years

Simply configure the time range and corresponding storage path

,

data will be automatically migrated to different storage media

RAM SSD Local hard
drive

S3

Multi-level storage of data in
TDengine

TDengine Cluster

V5 V3

V4 V8

dnode1

M1

V7

V6

V2

dnode 4

V5 V7

M0 V4

dnode 2

V5

V6

V3

V8

dnode 5

V2 V7

V6 V8

dnode 0

dnode 3

V3V2

V4M2

TAOSC

APP

TAOSC

APP

TDengine Cluster Architecture

app vnode mnode

 1:
insert

3: response

2: get meta-data

4:
insert
5:
ack 6:

ack

taosc

TDengine's typical
process

Strategies for High availability:

• Multiple copies & Master-Slave mechanism

• Writes can only be performed on the Master, but queries can be performed on the Slave node

• Supports both synchronous and asynchronous data replication between nodes

• When even number of copies, arbitrator is needed for solving the Split Brain problem

• For Mnode: Using synchronous replication, the entire system allows up to 3 Mnodes

• For Vnode: vnodes on different data nodes form a vnode group. The master-slave mechanism is

adopted in the vgroup. The number of vnodes in the vgroup is the number of copies. Using

asynchronous data to replicate by default

High availability of
TDengine

·

①

⑤

WriteApp

③ ④

 ②
Memory disk

Write Ahead Log Vnode

FILE FILE

Peer
Vnode

Flush

TDengine data writing process

Data
Node 0

Data
Node 1

Meta
Node

Driver

Data
Node

······

App

①

⑥

4-1 ②③

5-1

4-0

5-0

5-2

4-2

TDengine multi-node aggregation calculation process

Other highlights of TDengine

In real-life scenarios, it is often necessary to aggregate data over a period of time. Such as down

sampling, the sampling frequency is one per second, but in the end only the average value of one

minute is needed. TDengine introduces the keyword interval to perform aggregation on the time axis.

The aggregation of the timeline can be performed on a single table or on a group of tables that

meet the label filter conditions.

select avg(degree) from t1 interval(5m);

Query the average value of the temperature recorded by the sensor t1 every five minutes

select avg(degree) from thermometer where loc like ‘CA%’ interval(5m);

Query the average value of the temperature recorded by all sensors in California every five

minutes

Data aggregation on timeline (roll
up)

Currently supports Avg, Max, Min, Percentile, Sum, Count, Dev, First, Last, Diff, Scale, WAvg, Spread and

other operations. Calculation can be made for a time period, and can be aggregated for a table or a group of

tables that meet the label conditions.

Derived data calculated in real time can be written into a new table in real time to facilitate subsequent

query operations. Derived data can also perform various aggregation calculations with other original data

or other derived data to generate new data.

select avg(degree) from thermometer where loc like ‘CA%’ interval(5m) sliding(1m);

Calculate the average temperature of California for the past five minutes for every

minute

create table d1 as
select avg(degree) from thermometer where loc like‘CA%’ interval(5m) sliding(1m);

Calculate the average temperature of the last 5 minutes in California every minute and write it into the new

table d1

Stream Processing - Continuous Query

• Similar to Kafka, the application can subscribe to the data stream, as long as the data is updated,

the application will be notified in time

• When subscribing, the application only needs to specify the table name (it can be a super table)

and start time, and can also specify filter conditions

APP 1

APP 2

APP 3

Meter
Data collection point

Meter
Data collection point

TDengine
Cluster

Data Subscription

• The latest data point for a time-series is always saved in memory, so it can be

retrieved quickly.

• SQL function last_row is provided.

• In some cases, redis is not needed anymore, the complexity and cost can be

reduced.

Caching

18,000+
Star
s

4,300+
Forks

9,000+
Issue
s

Single Node Ed. Clustering
Ed.2019.07.12 2020.08.03

Project Open Sourced Stars Forks

InfluxDB 6 years ago 23,100 2,900

OpenTSDB 6 years ago 4,600 1,200

TimeScale 4years ago 12,700 665

www.github.com/taosdata/TDengine

TDengine Core are Fully Open Sourced

Jeff
Tao
• Email: jhtao@tdengine.com
• Twitter: twitter.com/jhtao
• LinkedIn: linkedin.com/in/jhtao/

• www.tdengine.com
• Discord: tinyurl.com/2p8j37aw

