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• IST (Head of the ECE Dept)

– Faculty of Engineering University of Lisbon

– ~9000 / ~55000 students

• INESC-ID

– Research institute

• 200 PhD researchers and 

• 300 Graduate Students 

– Main research areas

• Spoken Language Systems

• Information and Decision Support Systems 

• Interactive Virtual Environments 

• Embedded Electronic Systems 

• Communication Networks and Mobility
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Motivation

Cost, speed, size, and energy/operation encoded by  color [ITRS03]

• No solution with  few major drawbacks  as CMOS along all axes
– spin transistors, superconducting electronics, molecular electronics,

resonant tunneling devices, QCA, and optical switches
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Motivation

Nano processing technologies [ ITRS15-Beyond CMOS]

• scaled CMOS
– FinFET non-planar transistor dominant gate design for current 7 nm

• emerging nano-technologies require    

unconvetional

number systems &

computer arithmetic
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Unconventional Computer Arithmetic [IEEE Journal] 

• Confluence of non-conventional computer arithmetic, new
computing paradigms, emergent technologies and applications

– jigsaw puzzle: connecting pieces in the right way to get the whole picture



1. Logarithmic Residue Number Systems (LNS)

2. Residue Number Systems (RNS)

3. Stochastic Computing (SC)

4. Hyper-Dimensional Computing (HDC) 

5. DNA Computing

6. Quantum Computing

7. Applications: 

A. Lattice-based Post-Quantum  Cryptography

B. Machine Learning

8. Conclusions

Outline
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• Simple logarithmic operations come at the cost of more 
complex +,-

LNS
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• Addition/subtraction in LSN apply  Gaussiam Logarithms

• For high number of bits (32,64) piecewise polynomial
approximation or digit-serial iterative methods are applied

• For subtracting in the LNS domain, co-transformations
have to be applied in the critical region l [-1, 0]

LNS
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• 32-bit scalar microprocessor, Register-Memory ISA
– 16 general-purpose registers, 8 kB L1data cache

– two real adders/subtractors operating in 3 clock cycles

– four combined multiplier/divider/sqrt/integer units operating in 1
clock cycle

– vector operations use in parallel 4 functional units

• Fixed-point LNS-based AU
– Sign bit and 23 bits fractional component

– Taylor interpolation for addition and subtraction

• Fabricated with 0.18mm CMOS running at 125MHz, is
evaluated against the TMS320C6711 contemporary DSP

– addition marginally better multiplications 3.4x faster

– division and square root several times faster

European Logarithmic Microprocessor (ELM)

11



• Application of LNS on CNNs allows activation and weights 
with only 3bits

– with almost no loss in classification performance

• Accumulation can be done also in the log domain with the
approximation

LNS: Convolution Neural Networks
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RNS

• RNS based on a set of relatively prime moduli: moduli set

• The dynamic range M is given by:

• Integer X represented as:

Arithmetic operations (+,-,x,/):
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• 2 x2 Hybrid Photonic-Plasmonic (HPP) integrated switches
– fabricated by using Indium Tin Oxide as index modulation material

– voltage signal controls guidance of light (may operate at 400 GHz),
speed is defined by modulators, photodetectors and electronics

• RNS Parallelism (# switches grows with N2) and energy
efficiency of integrated phontonics high-speed RNS units

– Ex: (4+3) mod 5 Control using Thermometer Coding (TC)

RNS: Photonics
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• R(edundant)RNS is used for error detection/ correction
– residues are independent, by introducing redundant moduli, the

range of the legitimate moduli is extended to an illegitimate one

• The Processing for Y'all (CREEPY) [2018] core
microarchitecture and ISA integrates RRNS centered
algorithms and techniques to efficiently assure
computational error correction.

– significant improvements over a non-error correcting binary core

– novel schemes proposed also for RNS based memory access,
extend low power and energy efficient RRNS based architectures

RNS
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• From a continuous-time stochastic process, the value of a
bitstream is the #‘1’ bits over the total #bits (9/15=0.6)

• Multiplication addition

• Correctness impacted by correlation between bitstreams
– e.g. the same stream at the 2 inputs of the * produces the same

stream at the output, instead of the square

SC
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• Converters SC->Binary Binary->SC

• Highly non-linear functions (e.g. tanh and max functions in
ANNs) require FSM-based SC elements

SC
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• Boltzman Machine

AND

gate

• 5 by 5-bit */divider/factorizer 13x less area than binary
for the TSMC 65nm technology

SC-based CMOS Invertible Logic
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• Adiabatic Quantum-Flux-Parametron logic
– energy efficiency: ALU RISC V 10x lower energy than CMOS 12nm

• Two characteristics AQFP suitable to implement SC

– deep pipelining: gate is connected with AC clock signal requiring a
clock phase, difficult to avoid RAW hazards with binary computing

– The opportunity of true RNG using simple buffers

SC: Superconducting Quantum Device
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• Stochastic Recognition and Mining (StoRM) Processor

• 2D array of Stochastic PE (typically 15x15)

• Binary-to-stochastic units shared across rows/columns

• Implementation on TSMC 65nm: one order of magnitude
less circuit area and power consumption

SC: Processor
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• HDC inspired in brain-like operation
– supported on random high-dimensional vectors, in the order of

thousands of bits (10,000-bit vector)

– alternative to SVM and CNN for supervised classification

– Associate Memories (AM): pattern X is stored using pattern A as
the address, latter X can be retrieved from A or A’ similar to A

• The high number of bits does not improve resolution
– tolerant to errors and component failure, many patterns equivalent

– highly structured information, like in the brain, deals with
arbitrariness of the neural code

HDC
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• Componentwise Addition of a set: sum represents a set
individual vectors

• Multiplication implements with bitwise logic XNOR
– bipolar representation, (0, 1) -> (1, -1), X*Y=X xnor Y

– Multiplication maps points: X*M maps X into X_M that is as far
from X as the number of 1s in M;

M a random vector => multiplication randomizes X

– multiplication is distributive over addition, and implements a
mapping that preserves distance

HDC: Arithmetic
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• End-to-end brain-inspired HDC nanosystem, using
heterogeneous integration of multiple emerging
nanotechnologies

– Monolithic 3D integration of Carbon, Nanotube Field-Effect
Transistors (CNFETs) and Resistive Random-Access Memory
(RRAM)

– fine-grained and dense vertical connections between computation
and storage layers

– Integrating RRAM and CNFETs allows to create area-and energy-
efficient circuits

HDC: Nanosystem
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– IM stores a large collection of random hyper-vectors (items)

• maps symbols to items in the inference phase as trained

– DPUs combine hyper-vectors sequence according to the algorithm

• to compose a single hyper-vector per each class.

– AM stores the trained class hyper-vectors

• deliver the best prediction according to the Hamming distance (d_h).

HDC: Processor
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• With the DNA sticker model, a binary number represented
through two groups of single-stranded DNA molecules

– the memory strand, a long DNA molecule subdivided into non-
overlapping segments

– set of stickers, short DNA molecules, each with the length of a
segment, a sticker is complementary to one of those segments

DNA-based Computing
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• Example of the bitwise AND operation of 2 n-bit vectors

• DNA ALU was constructed:
– with 1-bit FA, AND, OR and NAND, decoding and controlling logic

DNA-based Computing
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• RRNS has been applied for overcoming the negative
effects caused by the defects and instability of the
biochemical reactions and errors in hybridizations

– applying the RRNS 3-moduli set {2n-1,2n+1,2n+1} to the DNA model
leads to one-digit error detection

– the parallel RRNS-based DNA arithmetic improves the reliability
of DNA computing while at the same time simplifies the DNA
encoding scheme

RRNS DNA-based Computing
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Quantum Computing

34

• A quantum bit (qubit), a microscopy unit, such as an atom
or a nuclear spin, is a superposition of orthogonal basis
states, |0> and |1>

• Generalizing, the state of an n-qubit system



Quantum Computing
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• Single qubit gates and respective unitary matrices



Quantum Computing
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• Quantum algorithms
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Lattice-based Cryptography

• Matrix 𝑅 = 𝑟1, … , 𝑟𝑙
𝑇: a basis of ℒ

• ℒ = 𝑟1ℤ۩…۩𝑟𝑙ℤ

• For 𝑛 ≥ 2, there are infinite basis
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Lattice-based Cryptography

• Encryption corresponds to adding a perturbation 𝑝
to a lattice point

• (ℎ0, ℎ1) is a “bad” lattice base
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Lattice-based Cryptography

• Decryption 
corresponds to 
finding the closest 
lattice vector 𝑢 to 𝑐
and outputting 𝑝 =
𝑐 − 𝑢

• (𝑟0, 𝑟1) is a “good” 
lattice base
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Lattice-based Cryptography

Babai’s Round-off Algorithm

𝑐 × 𝑅−1 ہ 𝑐ۀ × 𝑅−1 ہ 𝑐ۀ × 𝑅−1 × 𝑅
change of basis rounding components back to canonical basis

1
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Lattice-based Cryptography

Common Simplification Step

• Use special case of CVP: Bounded Distance Decoding 
Problem (BDD)

• Babai’s Round-off gives the closest vector for a rotated 
nearly-orthogonal basis R of a lattice

𝑝 = 𝑐 − ہ 𝑐𝑅−1ۀ 𝑅 modc 𝑚𝜎 for 𝑚𝜎 ≥ 2𝜎 + 1
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Lattice-based Cryptography

• Babai’s algorithm rewritten with integer arithmetic:

• 𝑢 = ඇඋ𝑐𝑅−1 𝑅 = 𝑐𝑅−1 +
1

2
𝑅 =

𝑑𝑐𝑅−1

𝑑
+

1

2
𝑅 =

2𝑐𝑑𝑅−1 + 𝑑 − (2𝑐𝑑𝑅−1 + 𝑑 mod 2𝑑 )

2𝑑
𝑅

where 𝑑 = det(𝑅)

Use RNS Montgomery’s
reduction
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RNS based LBC decryption

Results for LBC decryption in CPUs/GPUs

• Memory bandwidth plays a major role in decryption 

delay

• AVX2 implementation is faster than GPU because 

of memory transfers

Execution Times [× 106 clock cycles] (Speed-up)

Method 𝑛 = 400 𝑛 = 600 𝑛 = 800 𝑛 = 1000

Sequential (i7 

4770K)
97.51 283.8 619.4 1222

RNS-GPU 

(K40c)

22.97 

(4.2)

283.8 

(3.6)
248.9 (2.5) 512.4 (2.4)

RNS-GPU (GTX 

780 Ti)

16.55 

(5.9)

59.73 

(4.8)
148.2 (4.2) 349.6 (3.5)

4-core RNS-

CPU (i7 4770K)

21.05 

(4.6)

75.48 

(3.8)
189.9 (3.3) 369.7 (3.3)

4-core RNS-

CPU (with 

AVX2) (i7 

4770K)

8.668 

(11.2)

29.05 

(9.8)
74.79 (8.3) 148.5 (8.2)
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ML:CNNs
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ML: CNNs
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ML: CNNs
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ML: Nested RNS
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ML: Nested RNS
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ML: Nested RNS
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ML: NRNS based YOLOv2
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ML:Implementation
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ML: Evaluation



• Unconventional data representation and arithmetic
fundamental for computing on emerging technologies, such as

– RNS: DNA computing; SC: quantum devices (AQFP); HDC:
CNFET,RRAM

• New applications using unconventional arithmetic, namely
– LNS: ML/CNN; RNS: Post-Quantum cryptography; SC: homomorphic

encryption

• For the investigation on non-conventional arithmetic all
dimensions of the systems should be considered

– including not only computer arithmetic theory, but also advances in
technology and the demands of emergent applications.
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Conclusions
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for your attention!
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