



#### UNCONVENTIONAL COMPUTER ARITHMETIC FOR EMERGING APPLICATIONS AND TECHNOLOGIES

**IEEE COMPUTER SOCIETY DISTINGUISHED VISITORS PROGRAM (DVP)** 

https://www.computer.org/web/chapters/dvp

**Leonel Sousa** 

Webinar, July 9, 2020









#### UNCONVENTIONAL COMPUTER ARITHMETIC FOR EMERGING APPLICATIONS AND TECHNOLOGIES

**IEEE COMPUTER SOCIETY DISTINGUISHED VISITORS PROGRAM (DVP)** 

https://www.computer.org/web/chapters/dvp

**Leonel Sousa** 

Webinar, July 9, 2020





# **From Lisbon**

IJİ

- IST (Head of the ECE Dept)
  - Faculty of Engineering University of Lisbon
  - ~9000 / ~55000 students
- INESC-ID

nesc id

- Research institute
  - 200 PhD researchers and
  - 300 Graduate Students
- Main research areas
  - Spoken Language Systems
  - Information and Decision Support Systems
  - Interactive Virtual Environments
  - Embedded Electronic Systems
  - Communication Networks and Mobility



TÉCNICO LISBOA







# **Motivation**



Cost, speed, size, and energy/operation encoded by color [ITRS03]

- No solution with few major drawbacks as CMOS along *all* axes
  - spin transistors, superconducting electronics, molecular electronics, resonant tunneling devices, QCA, and optical switches

## **Motivation**



# Unconventional Computer Arithmetic [IEEE Journal]



Confluence of non-conventional computer arithmetic, new computing paradigms, emergent technologies and applications
 jigsaw puzzle: connecting pieces in the right way to get the whole picture

# Outline

- 1. Logarithmic Residue Number Systems (LNS)
- 2. Residue Number Systems (RNS)
- 3. Stochastic Computing (SC)
- 4. Hyper-Dimensional Computing (HDC)
- 5. DNA Computing
- 6. Quantum Computing
- 7. Applications:
  - A. Lattice-based Post-Quantum Cryptography
  - B. Machine Learning
- 8. Conclusions

### LNS

#### 1. Logarithmic Number Systems (LNS)

- 2. Residue Number Systems (RNS)
- 3. Stochastic Computing (SC)
- 4. Hyper-Dimensional Computing (HDC)
- 5. DNA Computing
- 6. Quantum Computing
- 7. Applications:
  - A. Lattice-based Post-Quantum Cryptography
  - B. Machine Learning
- 8. Conclusions

#### LNS

| $S_{FP}$ (sign bit)                                   | $E_{FP}$ (exponent): 8 bits                       | $F_{FP}$ (mantissa): 23 bits                    |  |  |  |
|-------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|--|--|--|
| $S_{LNS}$ (sign bit)                                  | $IT_{LNS}$ (integer): 8 bits                      | $F_{LNS}$ (fractional): 23 bits                 |  |  |  |
| $P = -1_{FP}^S \times 1.F_{FP} \times 2^{E_{FP}-127}$ |                                                   |                                                 |  |  |  |
| $p = -1^S_{LNS} \times 2^{IT_{LNS} \cdot F_{LNS}}$    |                                                   |                                                 |  |  |  |
| Absolute values                                       | minimum maximum                                   |                                                 |  |  |  |
| P (FP)                                                | $1.0 \times 2^{-126} \approx 1.2 \times 10^{-38}$ | $2 \times 2^{+127} \approx 3.4 \times 10^{+38}$ |  |  |  |
| p (LNS)                                               | $1.0 \times 2^{-128} \approx 2.9 \times 10^{-39}$ | $2 \times 2^{+127} \approx 3.4 \times 10^{+38}$ |  |  |  |

 Simple logarithmic operations come at the cost of more complex +,-

LNS

• Addition/subtraction in LSN apply Gaussiam Logarithms

$$G = \log_2(1 \pm 2^{\lambda}) \ , \ \lambda = -|q - p|$$

- For high number of bits (<u>32,64</u>) piecewise polynomial approximation or digit-serial iterative methods are applied
- For subtracting in the LNS domain, co-transformations have to be applied in the critical region  $\lambda$  [-1, 0]

# **European Logarithmic Microprocessor (ELM)**

- 32-bit scalar microprocessor, Register-Memory ISA
  - 16 general-purpose registers, 8 kB L1data cache
  - two real adders/subtractors operating in 3 clock cycles
  - four combined multiplier/divider/sqrt/integer units operating in 1 clock cycle
  - vector operations use in parallel 4 functional units
- Fixed-point LNS-based AU
  - Sign bit and 23 bits fractional component
  - Taylor interpolation for addition and subtraction
- Fabricated with 0.18µm CMOS running at 125MHz, is evaluated against the TMS320C6711 contemporary DSP
  - addition marginally better multiplications 3.4x faster
  - division and square root several times faster

### **LNS: Convolution Neural Networks**

- Application of LNS on CNNs allows activation and weights with only 3bits
  - with almost no loss in classification performance



• Accumulation can be done also in the log domain with the approximation

$$\log_2(1+x) \approx x$$
 for  $0 \le x < 1$ .

- 1. Logarithmic Number Systems (LNS)
- 2. Residue Number Systems (RNS)
- 3. Stochastic Computing (SC)
- 4. Hyper-Dimensional Computing (HDC)
- 5. DNA Computing
- 6. Quantum Computing
- 7. Applications
  - A. Lattice-based Post-Quantum Cryptography
  - B. Machine Learning
- 8. Conclusions



• RNS based on a set of relatively prime moduli: moduli set

nesc id

 $P = \langle m_1, m_2, \cdots, m_N \rangle$ RNS channels  $x_1$  $r_1$  $mod m_1$ The dynamic range M is given by:  $y_1$  $x_2$  $r_2$  $mod m_2$  $M = m_1 \times m_2 \times \cdots \times m_N$  $y_2$ Хbinary RNS R to to Integer *X* represented as: RNS binary i  $X \longrightarrow \{x_1, x_2, \cdots, x_N\}$  $x_i = X \mod m_i$  $x_N$  $r_N$  $mod \ m_N$  $y_N$ Arithmetic operations (+,-,x,/):  $R = X \circ Y$ 

 $\{r_1, r_2, \cdots r_N\} = \{(x_1 \circ y_1) \ mod \ m_1, (x_2 \circ y_2) \ mod \ m_2, \cdots, (x_N \circ y_N) \ mod \ m_N\}$ 





15

#### **RNS: Photonics**

- 2 x2 Hybrid Photonic-Plasmonic (HPP) integrated switches
  - fabricated by using Indium Tin Oxide as index modulation material
  - voltage signal controls guidance of light (may operate at 400 GHz), speed is defined by modulators, photodetectors and electronics
- RNS Parallelism (# switches grows with N<sup>2</sup>) and energy efficiency of integrated phontonics high-speed RNS units



- R(edundant)RNS is used for error detection/ correction
  - residues are independent, by introducing redundant moduli, the range of the legitimate moduli is extended to an illegitimate one
- The *Processing for Y'all* (CREEPY) [2018] core microarchitecture and ISA integrates RRNS centered algorithms and techniques to efficiently assure computational error correction.
  - significant improvements over a non-error correcting binary core
  - novel schemes proposed also for RNS based memory access, extend low power and energy efficient RRNS based architectures



# SC

- 1. Logarithmic Number Systems (LNS)
- 2. Residue Number Systems (RNS)
- 3. Stochastic Computing (SC)
- 4. Hyper-Dimensional Computing (HDC)
- 5. DNA Computing
- 6. Quantum Computing
- 7. Applications
  - A. Lattice-based Post-Quantum Cryptography
  - B. Machine Learning
- 8. Conclusions



#### SC

• From a continuous-time stochastic process, the value of a bitstream is the #'1' bits over the total #bits (9/15=0.6)



• Correctness impacted by correlation between bitstreams

nesc id

 e.g. the same stream at the 2 inputs of the \* produces the same stream at the output, instead of the square

#### SC



 Highly non-linear functions (e.g. tanh and max functions in ANNs) require FSM-based SC elements





#### **SC-based CMOS Invertible Logic**



 5 by 5-bit \*/divider/factorizer 13x less area than binary for the TSMC 65nm technology

# **SC: Superconducting Quantum Device**

- Adiabatic Quantum-Flux-Parametron logic
  - energy efficiency: ALU RISC V 10x lower energy than CMOS 12nm



- Two characteristics AQFP suitable to implement SC
  - deep pipelining: gate is connected with AC clock signal requiring a clock phase, difficult to avoid RAW hazards with binary computing
    - The opportunity of true RNG using simple buffers

#### **SC: Processor**

• Stochastic Recognition and Mining (StoRM) Processor



- 2D array of Stochastic PE (typically 15x15)
- Binary-to-stochastic units shared across rows/columns
- Implementation on TSMC 65nm: one order of magnitude less circuit area and power consumption



# **Hyper-Dimensional Computing (HDC)**

- 1. Logarithmic Number Systems (LNS)
- 2. Residue Number Systems (RNS)
- 3. Stochastic Computing (SC)
- 4. Hyper-Dimensional Computing (HDC)
- 5. DNA Computing
- 6. Quantum Computing
- 7. Applications
  - A. Lattice-based Post-Quantum Cryptography
  - B. Machine Learning
- 8. Conclusions



### HDC

- HDC inspired in brain-like operation
  - supported on random high-dimensional vectors, in the order of thousands of bits (10,000-bit vector)
  - alternative to SVM and CNN for supervised classification
  - Associate Memories (AM): pattern X is stored using pattern A as the address, latter X can be retrieved from A or A' similar to A
- The high number of bits does not improve resolution
  - tolerant to errors and component failure, many patterns equivalent
  - highly structured information, like in the brain, deals with arbitrariness of the neural code



### **HDC: Arithmetic**

- Componentwise **Addition** of a set: sum represents a set individual vectors
- **Multiplication implements** with bitwise logic XNOR
  - bipolar representation, (0, 1) -> (1, -1), X\*Y=X xnor Y
  - Multiplication maps points: X\*M maps X into X\_M that is as far from X as the number of 1s in M;

M a random vector => multiplication randomizes X

$$d(X_M, X) = \parallel X_M * X \parallel = \parallel M * X * X \parallel = \parallel M \parallel$$

multiplication is distributive over addition, and implements a mapping that preserves distance

 $d(X_M, Y_M) = d(X, Y)$ 



#### **HDC: Nanosystem**

- End-to-end brain-inspired HDC nanosystem, using heterogeneous integration of multiple emerging nanotechnologies
  - Monolithic 3D integration of Carbon, Nanotube Field-Effect Transistors (CNFETs) and Resistive Random-Access Memory (RRAM)
  - fine-grained and dense vertical connections between computation and storage layers
  - Integrating RRAM and CNFETs allows to create area-and energyefficient circuits



#### **HDC: Processor**



- IM stores a large collection of random hyper-vectors (items)
  - maps symbols to items in the inference phase as trained
- DPUs combine hyper-vectors sequence according to the algorithm
  - to compose a single hyper-vector per each class.
- AM stores the trained class hyper-vectors

nesc id

• deliver the best prediction according to the Hamming distance (d\_h).

# **DNA-based Computing**

- 1. Logarithmic Number Systems (LNS)
- 2. Residue Number Systems (RNS)
- 3. Stochastic Computing (SC)
- 4. Hyper-Dimensional Computing (HDC)
- 5. DNA Computing
- 6. Quantum Computing
- 7. Applications
  - A. Lattice-based Post-Quantum Cryptography
  - B. Machine Learning
- 8. Conclusions



## **DNA-based Computing**

- With the DNA sticker model, a binary number represented through two groups of single-stranded DNA molecules
  - the memory strand, a long DNA molecule subdivided into nonoverlapping segments
  - set of stickers, short DNA molecules, each with the length of a segment, a sticker is complementary to one of those segments



# **DNA-based Computing**

• Example of the bitwise AND operation of 2 n-bit vectors

Algorithm 1 AND $(T_{s1}, T_{s2}, n:in; T_d:out)$ **Require:** Pour blank strand of n bits (0...0) in  $T_d$ **Ensure:** bit stream in  $T_d$  = bit stream in  $T_{s1}$  bit stream in  $T_{s2}$ 1: Combine $(T_a, T_{s1}, T_{s2})$  { $T_a$ : auxiliary Tube} 2: for all bit  $0 \le i < n$  do Separate $(T_a, i, B_{[1]}, B_{[0]})$ 3: if  $B_{[0]}$  is empty then 4:  $Set(T_d, i)$ 5: end if 6: 7:  $Combine(T_a, B_{[1]}, B_{[0]})$ 8: end for

• DNA ALU was constructed:

nesc id

- with 1-bit FA, AND, OR and NAND, decoding and controlling logic

### **RRNS DNA-based Computing**

- RRNS has been applied for overcoming the negative effects caused by the defects and instability of the biochemical reactions and errors in hybridizations
  - applying the RRNS 3-moduli set  $\{2^{n-1}, 2^{n+1}, 2^{n+1}\}$  to the DNA model leads to one-digit error detection
  - the parallel RRNS-based DNA arithmetic improves the reliability of DNA computing while at the same time simplifies the DNA encoding scheme



- 1. Logarithmic Number Systems (LNS)
- 2. Residue Number Systems (RNS)
- 3. Stochastic Computing (SC)
- 4. Hyper-Dimensional Computing (HDC)
- 5. DNA Computing
- 6. Quantum Computing
- 7. Applications
  - A. Lattice-based Post-Quantum Cryptography
  - B. Machine Learning
- 8. Conclusions



#### **Quantum Computing**

 A quantum bit (*qubit*), a microscopy unit, such as an atom or a nuclear spin, is a superposition of orthogonal basis states, |0> and |1>

$$|x\rangle = \alpha |0\rangle + \beta |1\rangle \ ; \ |\alpha|^2 + |\beta|^2 = 1$$

• Generalizing, the state of an *n*-qubit system

$$\Upsilon = \sum_{b=0,1^n} c_b \, |b\rangle \; ; \; \sum_b |c_b|^2 = 1$$



### **Quantum Computing**

• Single *qubit* gates and respective unitary matrices



esc id

#### **Quantum Computing**

• Quantum algorithms





- 1. Logarithmic Number Systems (LNS)
- 2. Residue Number Systems (RNS)
- 3. Stochastic Computing (SC)
- 4. Hyper-Dimensional Computing (HDC)
- 5. DNA Computing
- 6. Quantum Computing
- 7. Applications
  - A. Lattice-based Post-Quantum Criptography
  - B. Machine Learning
- 8. Conclusions





• For  $n \ge 2$ , there are infinite basis



- Encryption corresponds to adding a perturbation p to a lattice point
- $(h_0, h_1)$  is a "bad" lattice base





Decryption
 corresponds to
 finding the closest
 lattice vector u to c
 and outputting p =
 c - u



 (r<sub>0</sub>, r<sub>1</sub>) is a "good" lattice base







#### **Common Simplification Step**

inesc id

- Use special case of CVP: Bounded Distance Decoding Problem (BDD)
- Babai's Round-off gives the closest vector for a rotated nearly-orthogonal basis *R* of a lattice



 $p = c - \lfloor cR^{-1} \rfloor R \mod m_{\sigma} \text{ for } m_{\sigma} \ge 2\sigma + 1$ 

• Babai's algorithm rewritten with integer arithmetic:

• 
$$u = \lfloor cR^{-1} \rfloor R = \lfloor cR^{-1} + \frac{1}{2} \rfloor R = \lfloor \frac{dcR^{-1}}{d} + \frac{1}{2} \rfloor R =$$
  

$$\frac{2cdR^{-1} + d - (2cdR^{-1} + d \mod (2d))}{2d} R$$
where  $d = \det(R)$ 
Use RNS Montgomery's reduction



# **RNS based LBC decryption**

#### Results for LBC decryption in CPUs/GPUs

| Execution Times [ $\times 10^6$ clock cycles] (Speed-up) |                 |                |             |             |
|----------------------------------------------------------|-----------------|----------------|-------------|-------------|
| Method                                                   | <i>n</i> = 400  | n = 600        | n = 800     | n = 1000    |
| Sequential (i7<br>4770K)                                 | 97.51           | 283.8          | 619.4       | 1222        |
| RNS-GPU<br>(K40c)                                        | 22.97<br>(4.2)  | 283.8<br>(3.6) | 248.9 (2.5) | 512.4 (2.4) |
| RNS-GPU (GTX<br>780 Ti)                                  | 16.55<br>(5.9)  | 59.73<br>(4.8) | 148.2 (4.2) | 349.6 (3.5) |
| 4-core RNS-<br>CPU (i7 4770K)                            | 21.05<br>(4.6)  | 75.48<br>(3.8) | 189.9 (3.3) | 369.7 (3.3) |
| 4-core RNS-<br>CPU (with<br>AVX2) (i7<br>4770K)          | 8.668<br>(11.2) | 29.05<br>(9.8) | 74.79 (8.3) | 148.5 (8.2) |

#### **ML:CNNs**

# YOLOv2 (You Only Look Once version 2)

Single CNN (One-shot) object detector

nesc id

Both a classification and a BBox estimation for each grid



#### **ML: CNNs**

# **2D Convolutional Operation**

Computational intensive part of the YOLOv2





#### **ML: CNNs**

# **Realization of 2D Convolutional Layer**

- Requires more than billion MACs
- Our realization
  - Time multiplexing
  - <u>Nested Residue Number System(NRNS)</u>





#### **ML: Nested RNS**

# **Nested RNS**

- $(Z_1, Z_2, ..., Z_i, ..., Z_L) \rightarrow (Z_1, Z_2, ..., (Z_{i1}, Z_{i2}, ..., Z_{ij}), ..., Z_L)$
- Ex: <7,<u>11</u>,<u>13</u>>X<7,11,13> Original modulus <7,<5,6,7><sub>11</sub>,<5,6,7><sub>13</sub>>X<7,<5,6,7><sub>11</sub>,<5,6,7><sub>13</sub>>

- 1. Reuse the same moduli set
- 2. Decompose a large modulo into smaller ones



#### **ML: Nested RNS**

# **Example of Nested RNS**

19x22(=418) on <7,<5,6,7>11,<5,6,7>13



#### **ML: Nested RNS**

# **Realization of Nested RNS**



### **ML: NRNS based YOLOv2**

# NRNS based YOLOv2

- Framework: Chainer 1.24.0
- CNN: Tiny YOLOv2
- Benchmark: KITTI vision benchmark
- mAP: 69.1 %

| Layer                         | # In.<br>Fmaps | # Out.<br>F Size              |  |  |
|-------------------------------|----------------|-------------------------------|--|--|
| (Feature Extraction)          |                |                               |  |  |
| Conv1                         | 3              | $128 \times 128$              |  |  |
| Conv2                         | 128            | $128 \times 128$              |  |  |
| Max Pool                      | 128            | $64 \times 64$                |  |  |
| Conv3                         | 128            | $64 \times 64$                |  |  |
| Conv4                         | 128            | 64 	imes 64                   |  |  |
| Conv5                         | 128            | $64 \times 64$                |  |  |
| Max Pool                      | 128            | $32 \times 32$                |  |  |
| Conv6                         | 128            | $32 \times 32$                |  |  |
| Conv7                         | 128            | $32 \times 32$                |  |  |
| Conv8                         | 128            | $32 \times 32$                |  |  |
| Max Pool                      | 128            | $16 \times 16$                |  |  |
| (Localization+Classification) |                |                               |  |  |
| Conv9                         | 128            | $16 \times 16$                |  |  |
| Conv10                        | 128            | $16 \times 16$                |  |  |
| Conv11                        | 128            | $5^2 \times 3 + (5 \times 5)$ |  |  |
| Accuracy (mAP)                | 69.1           |                               |  |  |

# **ML:Implementation**

# Implementation

- FPGA board: NetFPGA-SUME
  - FPGA: Virtex7 VC690T
  - LUT: 427,014 / 433,200
  - 18Kb BRAM: 1,235 / 2,940
  - DSP48E: 0 / 3,600
- Realized the pre-trained NRNS-based YOLOv2
  - 9 bit fixed precision
     (dynamic range: 30 bit)

- Synthesis tool: Xilinx Vivado2017.2
  - Timing constrain: 300MHz
  - 3.84 FPS@3.5W → 1.097 FPS/W



#### **ML: Evaluation**

# Comparison



|                    | NVivia Pascal<br>GTX1080Ti | NetFPGA-SUME |
|--------------------|----------------------------|--------------|
| Speed [FPS]        | 20.64                      | 3.84         |
| Power [W]          | 60.0                       | 3.5          |
| Efficiency [FPS/W] | 0.344                      | 1.097        |



## Conclusions

- Unconventional data representation and arithmetic fundamental for computing on emerging technologies, such as
  - RNS: DNA computing; SC: quantum devices (AQFP); HDC: CNFET,RRAM
- New applications using unconventional arithmetic, namely
  - LNS: ML/CNN; RNS: Post-Quantum cryptography; SC: homomorphic encryption
- For the investigation on non-conventional arithmetic all dimensions of the systems should be considered
  - including not only computer arithmetic theory, but also advances in technology and the demands of emergent applications.

# Thank You for your attention!

#### technology from seed



Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa