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Introduction
Medical Imaging

» Medical imaging is often perceived to designate the set of techniques that
noninvasively produce images of the internal aspect of the body

» As a discipline and in its widest sense, it incorporates radiology, tomography,
endoscopy, thermography, medical photography and microscopy
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Introduction
Imaging Modalities

» Span orders of magnitude in scale, ranging from molecules and cells to organ

systems and the full body

» Each imaging modality is primarily governed by the basic physical and biological

principles which influence the way each energy form interacts with tissues
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Introduction

Picture Archiving and Communication system (PACS)

Source: eHealth Network

> PACS consists of the following: ﬁ o e ——
- Digital acquisition (Picture) E Ay
- Storage devices (Archiving) ;-'" -:% w

- Display workstations i: :il . :wmm@ PACS Wb S @
- Components are interconnected through an intricate E m
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network (Communication) @
. Filen Degtizen

» Radiology information system (RIS)
- RIS is a networked software system for managing
medical imagery and associated data

- RIS is integrated with PACS Modality

“ Dicomn Storage
» Digital Imaging and Communications in Medicine

( D | CO M ) Storage Commltment

- Standard that establishes rules that allow medical
images and associated information to be exchanged
between imaging equipment from different vendors,
computers, and hospitals
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Introduction

Computer-Aided Detection and Diagnosis (CAD)

» A CAD system is a class of computer

systems that aim to assist in the
detection and/or diagnosis of
diseases

»The goal of CAD systems is to
improve the accuracy of radiologists
with a reduction of time in the
interpretation of images

» Computer-aided detection (CADe)
- Used with “Screening Radiology”

- Identify and mark suspicious areas in
an image

- Goal of CADe is to help radiologists
avoid missing a cancer

» Computer-aided diagnosis (CADx)
- Used with “Clinical Radiology”

- CADx help radiologists decide if a
woman should have a biopsy or not

- Report the likelihood that a lesion is
malignant
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Machine Learning

How Do Machines Learn?

» “Machine learning is the field of study which gives the computers the ability to learn
without being explicitly programmed”- Arther Samuels 1959

€ { A computer program is said to learn
from experience E with respect to
some class of tasks T and performance
measure P, if its performance at tasks in
T, as measured by P, improves with
experience E.

-Tom M. Mitchell
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Machine Learning

Progress in Medical Image Analysis

> Initially, medical image analysis was done with
sequential application of low-level pixel
processing and mathematical modeling

» At the end of the 1990s, supervised techniques,
where training data is used to develop a system

»Deep learning algorithms, in  particular
convolutional networks, have rapidly become a
methodology of choice for analyzing medical
images
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Deep Learning

Basics

» A deep neural network consists of a hierarchy of layers, whereby each
layer transforms the input data into more abstract representations (e.g.
edge -> nose -> face)

» The output layer combines those features to make predictions
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Deep Learning
Elements of Convolution Neural Networks (CNN)

=L ocal Con nectivity Convolution Layer

=Parameter Sharing
=Pooling/Subsampling Pooling Layer
«Nonlinea ri'[y Activation Function
By "pooling” (e.g., taking max) filter
4 responses at different locations we gain
robusiness to the exact spatial location
of features.
Share the same parameters across
different locations (assuming input is
Convolutions with learned kemels
&
Convolution Pooling Activation Function

: | IEEE
. D Guewres PIEEE



Deep Learning
CNN: Putting it Together
Output

Vectorised
Input image Feature maps Pooling window feature maps
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activation activation Vectorisation
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Deep Learning
CNN Hyper-parameters (knobs)

» Convolution
- Number of features
- Size of features

» Pooling
- Window size

- Window stride

» Fully Connected

- Number of neurons
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Deep Learning for CAD

Towards Precision and Automated Diagnosis

» The deep learning techniques could potentially change the design
paradigm of the CAD framework for several advantages over the old
conventional frameworks

» Deep learning can directly uncover features from the training data, and
hence the effort of explicit elaboration on feature extraction can be
significantly alleviated

» The neuron-crafted features may compensate and even surpass the
discriminative power of the conventional feature extraction methods

» Feature interaction and hierarchy can be exploited jointly within the
intrinsic deep architecture of a neural network

» The three steps of feature extraction, selection and supervised
classification can be realized within the optimization of the same deep
architecture

» The performance can be tuned more easily in a systematic fashion
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Deep Learning
Medical Imaging Tasks

» Classification
- Object or lesion classification
- Image/exam classification

» Detection

- Organ, region and landmark
localization
Mammograp hic mass

- Object or lesion detection classification.

Segmentation of lesons  Leak detection in airway
in the brain. tree segmentation

» Registration % 1

- Multi-view J 5
_ i Diabetic retinopathy Prostate segmentation Lungs nodule dassfication
Multi-modal classification

» Segmentation

- Organ and substructure
segmentation

- Lesion segmentation

- Pre-Post Treatment Change
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Deep Learning

Common Challenges in Medical Image Processing

» Data Collection

- Dataset Size Data
- What if we don’t have enough data?
- Not enough Labels l

» Model Selection
- Do we really need ‘deep’ models?
- How to choose a model? l

Model

- Can we accelerate training?
- Do we require custom model?

Result
> Result Interpretation

- Can we visually interpret the result?
- Does it help the doctors?
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Deep Learning
What If We Don’t Have Enough Data?

» Data Augmentation for Effective Training Set Expansion

Random thin-plate Spine
Deformities in 2D to generate
slight variations
H. R. Roth et. al., MICCAI, 2015

» Transfer Learning from Other Domains
- Initializing deeper network with transferred feature leads to better performance

I arget
Source labels
Small amount
of data/labels
Large amount
SLNRS Source Target
L model l model
ta

Source data Dl —
E E.g. ImageNet ‘
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Deep Learning for CAD
U-net

» Winner of various image segmentation tasks

» Shows stable performance even with small annotated images

Input DEM 1112112 224 12112 1_ Predicted Mask

ol o
u [Tal
N ~N
448 112 112
=P Conv 3x3, ReLU
?ﬁ ] .v MaxPool 2x2
L} L
448 448 896 224 224 t upconvae
> Dropout, then
% 2 g 3 sl 3 conv 3x3, RelLU
448 448 448 Copy
m =P Conv 1x1, sigmoid

17

O. Ronneberger et al. 2015

1EEE
)/ snegr== PIEEE




Deep Learning for CAD

Brain Lesion Detection using Generative Adversarial Network (GAN)

» Detect lesion in the multi modal brain images using patch wise classifier trained
with GAN

» Generator generates fake non lesion patches while discriminator distinguishes
real patches from fake non lesion patches

missclassification €————
error

Generated Image

Noise Input (Fake Image)
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Deep Learning for CAD

3D multi-scale FCN Intervertebral Disc detection and localization
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Our Recent Research
MICCAI Gleason 2019 Challenge

» Automatic Gleason Grading of
Prostate Cancer in Digital
Histopathology Image

» The challenge involves two separate
tasks:

- Task 1: Pixel-level Gleason grade
prediction

- Task 2: Core-level Gleason score
prediction

» Dataset

- Dataset consists of 260, 4K
images.

- Approved by the Clinical
Research Ethics Board of the
University of British Columbia
(CREB #H15-01064).

- Annotate TMA cores as benign,
and Gleason grades 3, 4, and 5
tissue.

- Augmentation by GAN and AE

—

@ Benign
@D Gleason grade 3
() Gleason grade 4

@ Gleason grade 5

Core Image

Pixel-level Gleason grade and
Core-level Gleason score

Source: https://gleason2019.grand-challenge.org/
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Our Recent Research
MICCAI Gleason 2019 Challenge: Our Proposed Model

» Network
- Fed into two branches. (Rol and a binary mask for Rol.)

» Transfer Learning

- The MS COCO dataset contains more than 200,000 images with pixel-
level annotations.

Convolutional Encoder-Decoder
L/ S

4 Pooling Indices

/

(leason grade and score prediction

- Conv + Batch Normalisabon + RelU
- Pooling - Upsampling Softmax

# https://gleason2019.grand-challenge.org/Results/

! IEEE

) guevres P IEEE



COVID-Net
Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray Images

13,975 CXR images
across 13,870
patient cases
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PEPX module

COVID-Net: A Tailored Deep
Convolutional Neural

Network Design for Detection of
COVID-19 Cases

from Chest X-Ray Images

Linda Wang, Zhong Qiu Lin, and
Alexander Wong
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input image (480x480x3)
CONVTXT7 (240x240x56)
PEPX1.1{120x120x56)
PEPX1.2 (120x120x56)
PEPX 1.3 (120x120x56)
PEPX 2.1 (60x60x112)
PEPX 2.3 (60x60x112)
PEPX 2.4 (60x60x112)
PEPX 3.1 (30x30x216)
PEPX 3.2 (30x30x224)
PEPX 3.3 (30x30x2186)
PEPX 3.4 (30x30x2186)
30x30x216)
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PEPX 4.1 (15x15x424)
PEPX 4.2 (15x15x424)
PEPX 4.3 (15x15x400)
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https://github.com/lindawangg/COVID-Net
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Conclusion

» Deep learning based medical image analysis has shown promising results for

data driven medicine

» By adopting recent progress in deep learning, many challenges in data driven

medical image analysis has been overcome

» Deep learning has the potential to improve the accuracy and sensitivity of

image analysis tools and will accelerate innovation and new product launches
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Computer Aided Detection and Diagnosis
My Research Group @ University of Calcutta
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